Skip to main content

Section 8.9 Series Convergence Strategy (SQ9)

Subsection 8.9.1 Activities

Activity 8.9.1.

Which test for convergence is the best first test to apply to any series k=1ak?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.2.

In which of the following scenarios can we successfully apply the Direct Comparison Test to determine the convergence of the series ak?
  1. When we find a convergent series bk where 0akbk
  2. When we find a divergent series bk where 0akbk
  3. When we find a convergent series bk where 0bkak
  4. When we find a divergent series bk where 0bkak

Activity 8.9.3.

Which test(s) for convergence would we use for a series ak where ak involves kth powers?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.4.

Which test(s) for convergence would we use for a series of the form ark?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.5.

Which test(s) for convergence would we use for a series ak where ak involves factorials and powers?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.6.

Which test(s) for convergence would we use for a series ak where ak is a rational function?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.7.

Which test(s) for convergence would we use for a series of the form (1)kak?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test

Activity 8.9.9.

Consider the series k=32k2.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.10.

Consider the series k=1k1+2k.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.11.

Consider the series k=02k2+1k3+k+1.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.12.

Consider the series k=0100kk!.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.13.

Consider the series k=12k5k.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.14.

Consider the series k=1k31k5+1.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.15.

Consider the series k=23k17k.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.16.

Consider the series k=21kk.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.17.

Consider the series k=1(1)k+1k+1.
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.18.

Consider the series k=21kln(k).
(a)
Which test(s) seem like the most appropriate one(s) to test for convergence or divergence?
  1. Divergence Test
  2. Geometric Series
  3. Integral Test
  4. Direct Comparison Test
  5. Limit Comparison Test
  6. Ratio Test
  7. Root Test
  8. Alternating Series Test
(b)
Apply an appropriate test to determine the convergence of this series.
  1. This series is convergent.
  2. This series is divergent.

Activity 8.9.19.

Determine which of the following series is convergent and which is divergent. Justify both choices with an appropriate test.
(a)
n=14(1)n+1n22n3+4n2+5.
(b)
n=1n!33nn4.

Subsection 8.9.2 Videos

Figure 186. Video: Identify appropriate convergence tests for various series

Subsection 8.9.3 Exercises